Proteomic analysis of aqueous humor proteins associated with cataract development

Yinghong Ji 1, Xianfang Rong 1, Hongfei Ye, Keke Zhang, Yi Lu *

Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenying Road, Shanghai 200031, China

A R T I C L E   I N F O

Article history:
Received 12 June 2015
Received in revised form 5 August 2015
Accepted 6 August 2015
Available online 8 August 2015

Keywords:
Aqueous humor (AH)
Cataract
Glucoma surgery
High myopia
Proteome
Vitrectomy surgery

A B S T R A C T

Background: Cataract is one of the most common eye diseases that can further cause blindness. Discovering susceptibility factors contributing to cataract development is helpful in identifying predisposed patients and improving treatment efficacy. Although proteomics technology has been used in study of protein markers related to eye diseases, few were on studies of cataract development.

Methods: To explore cataract-associated susceptibility factors in aqueous humor (AH), a quantitative proteomics study using the iTRAQ methodology was employed to compare AH protein profiles between high myopia patients & controls, glaucoma surgery patients & controls, and vitrectomy surgery patients & controls, respectively.

Results: A total of 445 AH proteins were identified, and 210 proteins were differentially expressed between myopia patients and controls, 262 proteins were differentially expressed between glaucoma surgery patients and controls, and 161 proteins were differentially expressed between vitrectomy surgery patients and controls. Among the 445 identified proteins, 77 were considered to be cataract-associated, and 5 of the 77 proteins were identified, and 210 proteins were differentially expressed between high myopia patients and controls, 262 proteins were differentially expressed between glaucoma surgery patients and controls, and 161 proteins were differentially expressed between vitrectomy surgery patients and controls. Among the 445 identified proteins, 77 were considered to be cataract-associated, and 5 of the 77 proteins were randomly selected and confirmed by ELISA assay. Biological functions of these 77 proteins were annotated by GO/pathways analysis. Additionally, 17 proteins were found to be involved in protein–protein interaction networks, 5 of which were associated with nervous system disease and eye diseases including cataract.

Conclusions: The identified candidate protein biomarkers associated with cataract development may lead to more insights into the underlying mechanisms of cataract disease.

© 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

1. Introduction

Cataract is one of the most prevalent eye diseases, and numerous studies have been conducted to investigate the underlying mechanisms of cataract development for potential prevention and treatment strategies [1–4]. Many evidences have showed that age is the biggest risk factor [5]. There are three types of age-related cataracts, including cortical cataracts, nuclear cataracts, and posterior subcapsular cataracts (PSCs) that differ in optical density, shape, color, age, size, and location.

Besides aging, environmental factors and genetics are also involved in cataract development. Prolonged UV exposure can increase cataract risk [6]. Diabetes, glaucoma, myopia, etc. are also associated with the formation of cataract [7]. In European and African populations, diabetes is found to be associated with age related posterior subcapsular and cortical cataract, but probably not nuclear cataract [8]. Cigarette smoking has consistently been identified as a risk factor for nuclear and possibly posterior subcapsular cataract, but not cortical cataract. In 2013, Pan et al. reported that myopia was associated with nuclear cataract, in addition, especially high myopia, may predispose PSC [9]. The report showed that the OR of myopia for PSC increased dramatically once myopia was defined as spherical equivalent of more than – 5.0 D to – 6.0 D.

Recently, proteomic analysis has been performed in various ocular diseases including diabetic retinopathy and cataract, which allows the simultaneous detection of a large number of proteins in specific cells, tissues or body fluids at a given time [10–14]. The main objective of the proteomic approach in these studies is to identify protein or peptide disease biomarkers for study of disease mechanisms, diagnosis and novel therapies. Previous studies of ocular fluids included tears, aqueous humor, and vitreous. Notably, vitreous humor accounts for over 80% of the eyeball volume and is the major fluid where sight of damage happens. Many proteins have been identified in vitreous humor, including albumin, transferrin, IgG, apolipoprotein, transthyretin serum, and a group of enzymes known as matrix metalloproteinases (MMPs) mediating the structure and function of extracellular matrix [15]. Besides vitreous humor, aqueous humor (AH) is also an important intraocular fluid which supply nutrients and remove metabolic wastes from avascular tissues in the eye. An increasing number of studies have identified the correlation between altered AH proteins and prognosis of many eye diseases including wet age-related macular degeneration (AMD) and myopia [16,17]. Previous studies have revealed that some protein groups such as antioxidant proteins, anti-angiogenic proteins, and

* Corresponding author.
E-mail address: luyieent126.com (Y. Lu).
1 These authors contributed equally to this work.
immunoregulatory proteins were abundant in AH [18]. Those proteins have important roles in regulating homeostasis in the eye and are potential biomarkers for identifying eye disease earlier.

Many previous proteomic studies of ocular fluids, including AH, are performed using 2-DE, which required pooling of large amounts of samples due to the low protein concentration in ocular fluids [15]. One technique called isobaric tagging for relative and absolute protein quantification (iTRAQ) in combination with mass spectrometry has been proved to be a sensitive quantitative proteomic method for high throughput protein identification and quantification [19]. In this study, we used iTRAQ combined with RPLC/RPLC–MS to conduct comparative proteomic profiling of AH from three patient/control groups—high myopia/control, after glaucoma surgery/control, and after vitrectomy surgery/control. The results revealed remarkable proteomic differences between patients and controls. These findings discovered potential AH biomarkers and susceptibility factors for predicting cataract development, and provide insights into the underlying mechanisms associated with high myopia, glaucoma, and vitrectomy.

2. Materials and methods

2.1. Subjects

Twenty-four subjects were recruited for this study, which were divided into four groups: 6 with high myopia, 6 after glaucoma surgery, 6 after vitrectomy surgery, and 6 controls (Table 1). All 24 subjects met the inclusion criteria of no history or slit-lamp evidence of ocular trauma, no ocular disease other than cataract, and no use of systemic antimitabolites, immunosuppressants, or corticosteroids. The average age of the patients was 58 (ranging from 49–68), and the average control age was 61 (ranging from 53–66). Other information for these subjects including axial length and clinical application of the lens opacities classification system III (LOCSIII) was also listed (Table 1). The study protocol was reviewed and approved by the Ethics Committee of Eye & ENT Hospital of Fudan University, Shanghai, China.

2.2. Surgical sample collection and preparation

Collection of AH was conducted as previously reported [10]. After collection, AH samples were immediately transferred to dust-free Eppendorf tubes containing 3 μL 50 × protease inhibitor cocktail, mixed, and stored for a maximum of 4 h at 4 °C. Samples were then centrifuged at 1600 × g in 4 °C for 15 min in a refrigerated centrifuge (Eppendorf 5804R). The supernatant was collected and centrifuged again at 16,000 × g in 4 °C for 15 min to further remove cellular organelles and debris from apoptotic cells. The supernatant was then collected and stored at −80 °C until further analysis.

2.3. Proteomic profiling by iTRAQ labeling

The proteomic profiling of all samples was conducted as previously reported [20]. The control group proteins were labeled with reporter tag 114, while the other three group proteins were labeled with reporter tag 116 (high myopia patients), 115 (glaucoma surgery patients), and 113 (vitrectomy surgery patients), respectively. Proteins whose fold changes were more than 1.5 or less than 0.6 between patients and control groups were designated to be differentially expressed.

2.4. Enzyme linked immunosorbent assay (ELISA) assay

Five differentially expressed proteins were randomly selected: spondin-1 (SPON1), lysozyme C (LYSC), chondroadherin-like protein (HOY415), serum amyloid P-component (SAMP), and angiopoietin-related protein 7 (ANGL7). The ELISA assay kits were used to confirm their changes including SPON1 (DRE12753, JRDun Biotech, Shanghai, China), LYSC (DRE10245, JRDun Biotech, Shanghai, China), HOY415 (DRE12760, JRDun Biotech, Shanghai, China), SAMP (DRE11650, JRDun Biotech, Shanghai, China), and ANGL7 (DRE12762, JRDun Biotech, Shanghai, China). Each assay was done with repeat.

2.5. Bioinformatics analyses

The 77 differentially expressed proteins were annotated according to GO database (http://www.geneontology.org/). Pathway annotation of these proteins was conducted by searching against the Kyoto Encyclopedia of Genes and Genomes database (http://www.genome.jp/kegg/pathway.html). Functional regulatory network analysis of these proteins was performed using web-based tool STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, http://string.embl.de/). Statistical analyses including independent t-test were performed using SPSS 17.0 software, and p ≤ 0.05 or p ≤ 0.01 were considered to be significant.

3. Results and discussion

3.1. Proteomic analysis of human aqueous humor

To investigate the mechanisms in cataract development, a high throughput quantitative proteomics study using the iTRAQ methodology was employed to profile human aqueous humor from three types of patients and their controls (Table 1). The three types of patients were high myopia, after glaucoma surgery, and after vitrectomy surgery. A total of 445 proteins were identified (Table S1) and this is by far the largest number of identified human aqueous humor proteins in a single proteomic study. Among the 445 proteins, 334 have been reported in aqueous, cornea, vitreous, tears, choroid, and retina, while the rest 111 proteins were first reported in this study according to the human eye proteome project [21]. Notably, 224 proteins were detected for the first time in aqueous, demonstrating the power of proteomic profiling in uncovering new human aqueous humor proteins. These 445 proteins perform catalytic, complement, enzymatic, signaling, structural, transporting, and other functions. As shown in Fig. 1, 15% of the 445 proteins were involved in signaling pathway, 15% were involved in calcitropic pathway, while 6% were transporters.

<table>
<thead>
<tr>
<th>Group (labeled ID)</th>
<th>Patient ID</th>
<th>Gender</th>
<th>Age (years old)</th>
<th>Axial length</th>
<th>LOCSIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (114)</td>
<td>1</td>
<td>Male</td>
<td>53</td>
<td>24.75</td>
<td>C2N2P3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Female</td>
<td>57</td>
<td>23.8</td>
<td>C3N2P2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Male</td>
<td>60</td>
<td>24.47</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Male</td>
<td>64</td>
<td>24.8</td>
<td>C3N3P4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Female</td>
<td>66</td>
<td>24.04</td>
<td>C3N3P2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Female</td>
<td>66</td>
<td>21.69</td>
<td>C2N3P3</td>
</tr>
<tr>
<td>Patients with high myopia (116)</td>
<td>1</td>
<td>Female</td>
<td>49</td>
<td>26.38</td>
<td>C2N3P4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Male</td>
<td>53</td>
<td>28.68</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Female</td>
<td>53</td>
<td>30.16</td>
<td>C4N5P3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Female</td>
<td>58</td>
<td>28.84</td>
<td>C3N5P2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Male</td>
<td>59</td>
<td>25.38</td>
<td>C3N3P4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Male</td>
<td>62</td>
<td>27.14</td>
<td>C4N4P5</td>
</tr>
<tr>
<td>Patients after glaucoma surgery (115)</td>
<td>1</td>
<td>Male</td>
<td>50</td>
<td>24.51</td>
<td>C2N2P2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Male</td>
<td>60</td>
<td>23.8</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Female</td>
<td>61</td>
<td>27.22</td>
<td>C2N2P2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Female</td>
<td>63</td>
<td>24.47</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Female</td>
<td>64</td>
<td>23.09</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Male</td>
<td>68</td>
<td>24.55</td>
<td>C3N3P3</td>
</tr>
<tr>
<td>Patients after vitrectomy surgery (113)</td>
<td>1</td>
<td>Male</td>
<td>52</td>
<td>27.92</td>
<td>C3N3P5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Male</td>
<td>53</td>
<td>25.17</td>
<td>C3N3P3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Female</td>
<td>54</td>
<td>27.71</td>
<td>C4N3P3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Female</td>
<td>60</td>
<td>23.91</td>
<td>C2N2P2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Female</td>
<td>60</td>
<td>25.33</td>
<td>C3N3P4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Male</td>
<td>66</td>
<td>24.45</td>
<td>C2N2P4</td>
</tr>
</tbody>
</table>
3.2. Proteomic changes in aqueous humor of eye disease patients

Because myopia has been reported to be associated with both nuclear and posterior subcapsular cataract, we then identified proteomic difference between high myopia patients and controls (Fig. 2A and Table S2). Here, 210 proteins were determined to be differently expressed. Among them, 123 were up-regulated in patients with myopia, including all seven keratins which were markers of various keratinocyte differentiation pathways [22]. There were 87 down-regulated proteins in patients with high myopia, including six crystallin proteins (beta-crystallin S, beta-crystallin B2, gamma-crystallin C, gamma-crystallin D, beta-crystallin B1, and beta-crystallin A3) which are critical for lens clarity and refraction, as well as involvement in cataract formation [23,24]. The other 81 down-regulated proteins included chondroadherin-like protein, histone H4, lipocalin-1, etc.

Patients after successful glaucoma surgery would frequently lose vision and form cataract [25]. Accordingly, we identified 262 differentially expressed AH proteins between patients after glaucoma surgery and controls. Among the 262 proteins, 138 are up-regulated and 124 down-regulated in patients after glaucoma surgery (Fig. 2B and Table S3). Notably, the up-regulated proteins include ten keratin proteins (type I & II) with fold changes greater than 2.14. Chondroadherin-like protein, retinol-binding protein 3, and collagen alpha-1 (VI) chain are the three most decreased.

Vitrectomy surgery was reported to significantly increase intraocular oxygen tension, and may lead to nuclear cataract formation [26]. Likewise, we found 161 differentially expressed proteins between patients after vitrectomy surgery and controls (Fig. 2C and Table S4). Among the 161 proteins, 100 were up-regulated after vitrectomy surgery, including all 10 keratins. There were 61 down-regulated proteins after vitrectomy surgery. Beta-crystallin B2, chondroadherin-like protein, beta-crystallin S, beta-crystallin B1, and beta-crystallin A3 were the five most decreased.

3.3. Proteomic changes of aqueous humor related to cataract development

To determine the proteomic changes of aqueous humor related to cataract development, we then identified proteins based on the abovementioned three kinds of patients and controls. As shown in Table S5, 77 proteins were changed in common between each kind of patient and controls, among which 17 proteins were synchronously down-regulated and 38 proteins were synchronously up-regulated in patients either with high myopia or after glaucoma surgery, or after vitrectomy surgery. Out of the 17 down-regulated proteins, chondroadherin-like protein (CHADL) was the most decreased one, which was recently reported to have a negative regulatory role and could possibly ensure the formation of a stable extracellular matrix [27]. Calsyntenin-1 was also decreased, and its decrease has been reported to be involved in proliferative diabetic retinopathy via differentiating vitreous proteomes. Seven keratin proteins were increased in all three patient groups. The other 22 proteins changed in only one or two of the patient groups. For example, the levels of all six crystallin proteins were decreased in both high myopia and vitrectomy surgery patients, but not in patients after glaucoma surgery. The decrease of these six crystallin proteins may be the reason that high myopia and vitrectomy surgery patients predispose posterior subcapsular and nuclear cataracts, which showed similar patterns in cataract development.

3.4. Validation of protein expression changes by ELISA assay

To confirm the changes in protein expression discovered by iTRAQ proteomic analysis, ELISA assay was performed to check the expressions of five randomly selected AH proteins: SPON1, LYSC, H0Y415, SAMP, and ANGL7 (Table S5). All ELISA results were consistent with the proteomic discoveries (Fig. 3).

3.5. Functional analysis of the identified cataract-associated proteins

GO annotation analysis showed that the identified 77 cataract-associated proteins can be functionally divided into three groups: (1) cellular component; (2) molecular function; and (3) biological process (Table S6). For component ontology, there were seven GO terms annotated, including cell part, extracellular region part, organelle,
macromolecular complex, organelle part, extracellular region, and membrane-enclosed lumen. For function ontology, 5 GO terms were annotated, including binding, structural molecule activity, enzyme regulator activity, catalytic activity, and receptor activity. For biological process, a total of 44 GO terms were annotated, including developmental process, metabolic process, regulation of biological process, and multicellular organismal process.

We also performed pathway annotation of these proteins to determine metabolic and/or signal transduction pathways with significantly biological functions (Fig. 4). The results were 30 significant pathways divided into 5 groups: cellular processes, environmental information processing, human diseases, metabolism, and organismal systems. Out of the 30 significant pathways, 12 were referred to infectious diseases, neurodegenerative diseases, signal transduction, signaling molecules/interaction, and transport/catabolism.

To find out evidence of physical/functional interactions between the identified cataract-associated proteins, bioinformatics analysis was used to estimate the biological network according to the STRING (Search Tool for the Retrieval of Interacting Genes, STRING, Version 9.0) database. As shown in Fig. 5, there are three groups in the biological networks, which have 10, 5, and 2 proteins, respectively. In each group, the confidence between any two proteins is more than 0.4. The first group contains 10 proteins, among which complement C3 (C3), complement C5 (C5), prothrombin (F2), beta-2-glycoprotein 1 (APOH), and serum amyloid P-component (APCS) all have four interactions. Some of the interactions are high-level, such as the interaction between C3 and C5 (score 0.962), and the interaction between F2 and APOH (score 0.948). Four crystallin proteins and heat shock protein beta-1 (HSPB1) were grouped together. These proteins are associated with nervous system diseases and eye diseases including cataract. Amyloid-like protein 1 (APLP1) and Spondin-1 (SPON1) interacted with each other (scoring 0.797). The results of functional analysis of identified cataract-associated proteins could potentially advance our understanding of the underlying mechanisms of cataract disease.

4. Conclusion

In summary, our proteomic profiling study revealed remarkable proteomic changes after high myopia, glaucoma surgery, and vitrectomy surgery. Based on these discoveries, 77 cataract-associated proteins were determined while their biological function and interaction network were also explored. The results could provide new insights into the mechanism of cataract development, as well as selecting potential biomarkers for diagnosis and monitoring of cataract formation.

Funding sources

This work was supported by Grant No. 81300745 from the National Science Foundation of China, Grant No. 11231200602 from the Shanghai Science and Technology Commission and Grant No. PW 2011D-7 from the Key-Collaborative Project of Health Bureau of Pudong New Area.
Disclosures

The authors declare no competing financial interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.clinbiochem.2015.08.006.

References


