Please use this identifier to cite or link to this item: http://dl.umsu.ac.ir/handle/Hannan/125409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrivedi, Mahendra Kumar-
dc.contributor.authorNayak, Gopal-
dc.date.accessioned2016-11-24T06:20:05Z-
dc.date.available2016-11-24T06:20:05Z-
dc.date.issued2015-07-20-
dc.identifier.citationTrivedi MK, Nayak G, Patil S, Tallapragada RM, Mishra R(2015) Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose. J Mol Pharm Org Process Res 3: 126. doi:10.4172/2329-9053.1000126en_US
dc.identifier.issn2329-9053-
dc.identifier.other10.4172/2329-9053.1000126-
dc.identifier.urihttp://trivediscience.com/publications/pharmaceuticals-publications/influence-of-biofield-treatment-on-physicochemical-properties-of-hydroxyethyl-cellulose-and-hydroxypropyl-cellulose/-
dc.identifier.urihttp://dl.umsu.ac.ir/handle/Hannan/125409-
dc.description.abstractCellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment. The treated HEC and HPC polymer were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The XRD studies revealed a semi-crystalline nature of both the polymers. Crystallite size was computed using Scherrer’s formula, and treated HEC polymer showed a significant increase in percentage crystallite size (835%) as compared to the control polymer. This higher increase in crystallite size might be associated with greater crystallite indices causing a reduction in amorphous regions in the polymer. However treated HPC polymer showed decrease in crystallite size by -64.05% as compared to control HPC. DSC analysis on HEC polymer revealed the presence of glass transition temperature in control and treated HEC polymer. We observed an increase in glass transition temperature in treated HEC, which might be associated with restricted segmental motion induced by biofield. Nonetheless, HPC has not showed any glass transition. And no change in melting temperature peak was observed in treated HPC (T2) however melting temperature was decreased in T1 as compared to control HPC. TGA analysis established the higher thermal stability of treated HEC and HPC. CHNSO results showed significant increase in percentage oxygen and hydrogen in HEC and HPC polymers as compared to control samples. This confirmed that biofield had induced changes in chemical nature and elemental composition of the treated polymers (HEC and HPC).en_US
dc.language.isoen_USen_US
dc.publisherOmics Publishing Groupen_US
dc.subjectHydroxyethyl Celluloseen_US
dc.subjectHydroxypropyl Celluloseen_US
dc.subjectXRDen_US
dc.subjectDSCen_US
dc.subjectTGAen_US
dc.subjectBiofield Treatmenten_US
dc.subjectThe Trivedi Effecten_US
dc.subjectMahendra Trivedien_US
dc.subjectPhysicochemical Properties of Hydroxyethyl Celluloseen_US
dc.subjectPhysicochemical Properties of Hydroxypropyl Celluloseen_US
dc.titleInfluence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Celluloseen_US
dc.typeArticleen_US
Appears in Collections:منابع مشترک



Items in HannanDL are protected by copyright, with all rights reserved, unless otherwise indicated.