Please use this identifier to cite or link to this item: http://dl.umsu.ac.ir/handle/Hannan/125577
Title: Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate
Authors: Trivedi, Mahendra Kumar;Branton, Alice;Trivedi, Dahryn;Nayak, Gopal
subject: Triphenyl Phosphate;Biofield Treatment;X-Ray Diffraction;Differential Scanning Calorimetry;Thermogravimetric Analysis;Trivedi Effect
Year: 14-Oct-2015
Publisher: Science Publishing Group
Citation: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana. Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate. American Journal of Applied Chemistry. Vol. 3, No. 5, 2015, pp. 168-173. doi: 10.11648/j.ajac.20150305.13
Abstract: Triphenyl phosphate (TPP) is a triester of phosphoric acid and phenol. It is commonly used as a fire-retarding agent and plasticizer for nitrocellulose and cellulose acetate. The present study was an attempt to evaluate the impact of biofield treatment on physicochemical and spectroscopic properties of TPP. The study was carried out in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated samples of TPP were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. XRD study revealed the decrease in crystallite size (6.13%) of treated TPP that might be due to presence of strains and increase in atomic displacement from their ideal lattice positions as compared to control sample. DSC thermogram of treated TPP showed the increase in melting temperature (1.5%) and latent heat of fusion (66.34%) with respect to control. TGA analysis showed the loss in weight by 66.79% in control and 47.96% in treated sample. This reduction in percent weight loss suggests the increase of thermal stability in treated sample as compared to control. FT-IR and UV spectroscopic results did not show the alteration in the wavenumber and wavelength of FT-IR and UV spectra, respectively in treated TPP with respect to control. Altogether, the XRD and DSC/TGA results suggest that biofield treatment has the impact on physical and thermal properties of treated TPP.
URI: http://trivediscience.com/publications/pharmaceuticals-publications/physicochemical-and-spectroscopic-characterization-of-biofield-treated-triphenyl-phosphate/
http://dl.umsu.ac.ir/handle/Hannan/125577
ISSN: 2330-8753
Appears in Collections:منابع مشترک



Items in HannanDL are protected by copyright, with all rights reserved, unless otherwise indicated.